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A new adaptive hybrid optimization strategy, entitled squads, is proposed for complex inverse analysis

of computationally intensive physics-based models. Typically, models are calibrated and model

parameters are estimated by minimization of the discrepancy between model simulations characteriz-

ing the system and existing observations requiring a substantial number of model evaluations. Squads is

designed to be computationally efficient and robust in identification of the global optimum (i.e.

maximum or minimum value of an objective function). It integrates global and local optimization using

Adaptive Particle Swarm Optimization (APSO) and Levenberg–Marquardt (LM) optimization using

adaptive rules based on runtime performance. The global strategy (APSO) optimizes the location of a set

of solutions (particles) in the parameter space. The local strategy (LM) is applied only to a subset of the

particles at different stages of the optimization based on the adaptive rules. After the LM adjustment of

the subset of particle positions, the updated particles are returned to APSO. Therefore, squads is a global

strategy that utilizes a local optimization speedup. The advantages of coupling APSO and LM in the

manner implemented in squads is demonstrated by comparisons of squads performance against

Levenberg–Marquardt (LM), Particle Swarm Optimization (PSO), Adaptive Particle Swarm Optimization

(APSO; i.e. TRIBES), and an existing hybrid optimization strategy (hPSO). All the strategies are tested on

2D, 5D and 10D Rosenbrock and Griewank polynomial test functions and a synthetic hydrogeologic

application to identify the source of a contaminant plume in an aquifer. Tests are performed using a

series of runs with random initial guesses for the estimated parameters. The performance of the

strategies are compared based on their robustness, defined as the percentage of runs that identify the

global optimum, and their efficiency, quantified by a statistical representation of the number of

function evaluations performed prior to identification of the global optimum. Squads is observed to

have better performance than the other strategies for the test functions and the hydrogeologic

application when both robustness and efficiency are taken into consideration.

Published by Elsevier Ltd.
1. Introduction

Models are often used in the geosciences to indirectly estimate
unknown (not observable) physical properties of a system based
on observable quantities representing system behavior (Carrera
and Neuman, 1986; Dahlin, 2001; Jessell, 2001; Meek, 2001;
Poeter and McKenna, 1995). In this process, the mathematical
model is designed to simulate the system behavior f ðhÞ for a given
set of model parameters h representing the actual physical
properties of the system. The more accurately the model matches
the observations, the more representative the model parameters
are assumed to be. The process of making inferences about model
parameters, commonly referred to as inverse modeling, regularly
Ltd.
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dharp@lanl.gov (D.R. Harp).
results in difficult optimization problems where a set of model
parameters capable of acceptable representation of system beha-
vior is sought. The optimization process is based on a metric
representing the discrepancy between the model simulations f ðhÞ

and the system observations. This discrepancy metric is also
called the objective function (OF; FðhÞ), and is a function of
model parameters h. The metric is represented by a multi-
dimensional response hyper-surface; a two-dimensional surface
in a three-dimensional space for the case of two model para-
meters. The OF typically has a complex shape due to multiple
minima (representing multiple plausible solutions) and flat
regions (representing insensitivity of the OF to the model para-
meters). An optimization process is based on a series of guided
model evaluations for different model parameter sets. The chal-
lenges in the optimization process come from complications in
identifying the global minima and from requirements to execute a
substantial number of model evaluations. Frequently, the number
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of model evaluations needed for optimization can vary from about
102 to more than 106 depending on the complexity of the inverse
model. As a result, the optimization process can be especially
difficult in real-world applications using physical models where a
single forward model simulation takes from several minutes to
more than an hour. In these situations, even efficient parallel
techniques (e.g. Vesselinov et al., 2001) can cause substantial
computational burden. Therefore it is important to develop compu-
tationally efficient and robust strategies that can identify the global
minimum with a relatively small number of model evaluations.

There are various optimization strategies that have been
developed to solve inverse problems. Different optimization
techniques have their own strengths that are beneficial when
applied to different types of problems. In general, existing
optimization strategies can be classified as global and local
(Nocedal and Wright, 1999). Global optimization excels at robust
exploration of the OF, identifying multiple areas of attraction;
however, global strategies are inefficient at locating the para-
meter set producing an optimal solution within an area of
attraction. As a result, in the case of real world model inversions,
the application of global optimization may be unfeasible when
the model evaluations take a substantial amount of computa-
tional time (Keating et al., 2010). Typically, the global optimiza-
tion strategies do not require smooth objective functions. Local
optimization excels at efficiently identifying the optimal model
parameters within an area of attraction; however, local optimiza-
tion is not designed for robust exploration of the OF space outside
of an area of attraction. Local optimization is efficient within an
area of attraction because it utilizes local information about the
gradient and curvature of the OF. This requires estimation of the
first and second order derivatives of the OF in the parameter
space. As many real world model problems have OF with multiple
minima, the use of local optimization alone is not always robust.
One of the most commonly used local strategies is Levenberg–
Marquardt (LM), which has been applied in many inverse analysis
and parameter estimation codes in the geosciences such as
UCODE (Poeter and Hill, 1999; Doherty, 2005).

Global and local optimizations are complimentary; where one
excels, the other struggles, and vice versa. The benefits of hybrid
global/local optimization have been demonstrated previously
using particle swarms (Noel and Jannett, 2004; Leontitsis, 2004;
Zhang et al., 2007; Ghaffari-Miab et al., 2007). Memetic algo-
rithms (Moscato and Cotta, 2003; Digalakis and Margaritis, 2004;
Hart et al., 2005; Krasnogor, 2005; Moscato et al., 2007; Goh et al.,
2009), which draw on the concept of Universal Darwinism devel-
oped by Dawkins (2006), and are hybrid strategies typically
associated with combining local optimization with genetic algo-
rithms. The global optimization code AMALGAM, developed by
Vrugt and Robinson (2007), has many similarities to these
approaches, adaptively shifting preference among a set of evolu-
tionary algorithms. Here, we introduce a new development in
hybrid optimization, coupling recent developments in Adaptive
Particle Swarm Optimization (APSO) and Levenberg–Marquardt
(LM) techniques, producing a novel adaptive hybrid strategy
entitled squads. In essence, squads is a global strategy utilizing
local optimization speedup. Squads applies LM to a subset of
particles at different stages of APSO based on adaptive rules. After
the LM update of the particle position, the particle is passed back
to APSO and continues to evolve based on APSO rules.

Squads is substantially different than AMALGAM and other
memetic algorithms. In AMALGAM, all the optimization strategies
are simultaneously applied to tackle the inverse problem, and the
AMALGAM algorithm provides a set of adaptive rules to exchange
information between optimization strategies and to shift prefer-
ence among the optimization strategies based on their perfor-
mance. In squads, the APSO strategy drives the inverse problem
from the start till the end of the optimization process; the APSO
strategy identifies the initial parameter guesses and terminates
the optimization process. The LM strategy is utilized by APSO as a
local speedup of the optimization process. No information is
exchanged between the individual LM runs about the properties
of the OF space, they are completely independent, and their
performance does not terminate the squads run. The performances
of squads and AMALGAM (as well as other memetic algorithms)
are difficult to compare because they are designed to tackle
different types of inverse problems. Squads is only suitable for
problems that have a continuous OF space with well defined
derivatives; AMALGAM is more suitable for stochastic inverse
problems with very complex and discontinuous parameter space.
Both types of inverse problems are commonly solved in practice.

Squads is specifically designed to be robust and computationally
efficient, capable of identifying the global minimum with a
relatively small number of model evaluations in complex inverse
problems with continuous OF space. The name squads refers to the
hierarchical structure of the population of solutions in the algo-
rithm into small groups, or squads, similar to the APSO algorithm
TRIBES (Clerc, 2004). While previous hybrid strategies combining
PSO and LM have been introduced (Katare et al., 2004; Chau, 2005),
squads provides advancements in hybrid optimization as it (1) is
adaptive, (2) couples TRIBES (an adaptive multi-swarm PSO algo-
rithm as opposed to standard PSO) with LM, and (3) fully integrates
APSO and LM as opposed to a staged optimization approach.

The relative performance of squads is compared to other
optimization strategies using the Rosenbrock (1960) and
Griewank (1981) polynomial test functions. While many other test
functions are available exhibiting more complex characteristics, for
the purposes of comparing the relative performance of strategies,
the Rosenbrock and Griewank functions are deemed appropriate.
These test functions are frequently used for comparisons and
testing of global and local optimization algorithms (cf. Pan et al.,
2010; Rao et al., 2012a, 2012b). Many real world inverse problems
are characterized with OF space complexities similar to the
complexities represented by these test functions. Squads is also
applied to solve a hydrogeological problem related to identification
of the source of a contaminant plume in an aquifer; this problem is
frequently solved in applications related to protection and reme-
diation of groundwater resources (Bagtzoglou et al., 1991;
Snodgrass and Kitanidis, 1997; Atmadji and Bagtzoglou, 2001;
Sun et al., 2006; Dokou and Pinder, 2009). In order to demonstrate
the relative benefits of the hybrid strategy of squads, its perfor-
mance is compared to open-source distributions of LM (Lourakis,
2004), PSO (Particle Swarm Central, 2006), and APSO (Clerc, 2004).
Additionally, squads is compared to hPSO (Leontitsis, 2004), an
open-source hybrid strategy that combines PSO and the Nelder–
Mead (1965) downhill simplex strategy implemented in the
MATLABs (The MathWorks Inc, 2003) computing environment.

Our intention in this research is to (1) demonstrate the relative
benefit of the adaptive coupling of PSO and LM in squads by direct
comparisons with PSO, LM, and TRIBES, (2) compare the perfor-
mance of squads against a freely available alternative hybrid
approach (hPSO; Leontitsis, 2004). Based on this research, we
conclude that the adaptive, hybrid strategy proposed here and
implemented in squads is an efficient and robust optimizer
worthy of further consideration. Further research is required to
provide comparisons of squads with other algorithms and on
other test problems and applications.
2. Particle swarm optimization

Sociobiologists have theorized that individuals within a popu-
lation can benefit from the previous knowledge and experience of
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other members of the population while searching for sporadically
distributed food sources (Wilson, 1975). The ubiquity of schooling
and flocking tendencies common among many species suggests
that this is an efficient, cost-effective strategy for the survival of
individuals. It is easy to recognize the analogy of organisms
searching for food sources and mathematical algorithms search-
ing for optimal solutions. This recognition led to the development
of PSO by Kennedy and Eberhart (1995), building on previous
research intended to graphically simulate the flocking behavior of
birds. Certain aspects of the flocking behavior of this early
research has been eliminated in order to improve PSO perfor-
mance in global optimization, leading to the use of the term
swarm to describe the graphical behavior of PSO.

The development of PSO has produced a parsimonious optimi-
zation strategy, modeling a population of randomly selected initial
solutions (particles) by their position and velocity (Clerc, 2006). In
a D-dimensional parameter space, the position and velocity of the
ith particle can be represented as pi ¼ ½pi,1,pi,2, . . . ,pi,D� and
vi ¼ ½vi,1,vi,2, . . . ,vi,D�, respectively. An empirical formula for deter-
mining the swarm size S has been suggested as S¼ 10þ2

ffiffiffiffi
D
p

(Particle Swarm Central, 2006). Particles retain a record of the best
location they have visited so far denoted as bi ¼ ½bi,1,bi,2, . . . ,bi,D�.
Particles are also informed of the best location that K other
randomly chosen particles have visited, where the best location
of the K informants is denoted as gi ¼ ½gi,1,gi,2, . . . ,gi,D�. A standard
value for K is 3 (Particle Swarm Central, 2006). These networks of
informers are reinitialized after iterations with no improvement to
the global best particle of the swarm. The velocity of the ith particle
in the jth dimension is updated from iteration k to kþ1 as

vi,jðkþ1Þ ¼wvi,jðkÞþc1r1ðbi,j�pi,jðkÞÞþc2r2ðgi,j�pi,jðkÞÞ,

k¼ f1, . . . ,Dg, ð1Þ

where w is a constant referred to as the inertia weight, c1 and c2 are
constants referred to as acceleration coefficients, r1 and r2 are
independent uniform random numbers in ½0;1�. The parameter w

controls the level of influence between the previous and current
particle displacement, c1 and c2 scale the random influence of
(1) the particle memory (past particle locations in the parameter
space), and (2) the current network of particle informers (current
informer locations in the parameter space), respectively. A limita-
tion on the magnitude of the velocity Vmax is commonly employed.
The particle position is updated during each iteration as

pi,jðkþ1Þ ¼ pi,jðkÞþvi,jðkþ1Þ, k¼ f1, . . . ,Dg: ð2Þ

It has been recognized that the selection of w, c1, c2, and Vmax

tune the performance of PSO, modifying the balance between
exploration (spreading the particles throughout the parameter
space) and intensification (focusing the particles within an area of
attraction). Manual tuning of PSO’s parameters can be a delicate
task. Adaptive PSO (APSO) has emerged in order to reduce or
eliminate the often difficult and time-consuming process of
parameter tuning of PSO (Cooren et al., 2009).

One of the algorithmic variants of APSO is TRIBES (Clerc, 2006)
(TRIBES is not an acronym, but we follow the convention of all
capital letters as proposed by its designer), which eliminates the
tuning of PSO parameters. PSO has been proven competitive with
well-known strategies on a suite of test problems (Cooren et al.,
2009). As the name suggests, TRIBES partitions the particles into
groups, referred to as tribes, intended to facilitate the exploration of
multiple areas of attraction. In this way, a hierarchical structure is
established where the swarm is composed of a network of tribes,
and each tribe is a network of particles. The intent is to eliminate
parameter tuning as the swarm evolves from an initial set of tribes,
and the tribes evolve from single particles based on rules governing
the evolution of the swarm topology and rules for generation and
elimination of entire tribes and individual particles within the
tribes. The particle within a tribe with the lowest/highest OF for
minimization/maximization is considered the shaman of the tribe.
Information is shared only between the particles within a tribe.
Information between the tribes is shared only through the sha-
mans. In this way, the displacements of non-shaman particles are
influenced by the shaman of their tribe, while the displacements of
the shamans are influenced by the best shaman in the swarm. The
source code for TRIBES is available from Clerc (2004).
3. Squads adaptive hybrid optimization

Various approaches have been introduced to couple the global
search capabilities of PSO with the efficiency of first- and second-
order local optimization. Clerc (1999) introduced a PSO strategy
that adjusts particle locations based on approximations of the
gradient of the OF utilizing the current particle locations. Noel
and Jannett (2004) developed a hybrid PSO strategy incorporating
gradient information directly in the calculation of particle velo-
city. Leontitsis (2004) coupled PSO with the Nelder–Mead sim-
plex strategy (Lagarias et al., 1998, hPSO), Zhang et al. (2007)
coupled PSO and back-propagation to train neural networks.
Ghaffari-Miab et al. (2007) developed a hybrid strategy, iterating
between PSO and BFGS quasi-Newton optimization. We present a
hybrid strategy called squads that couples APSO with Levenberg–
Marquardt (LM). The following provides a detailed description of
a coupling of APSO and LM based on adaptive rules, where LM is
applied to improve the locations of a subset of selected particles
(the shamans) in the course of the optimization process. The
current APSO strategy implemented in squads is TRIBES (Clerc,
2006), and LM is performed using the LevMar library (Lourakis,
2004).

Much of the time-consuming and difficult tuning required of
many optimization strategies is reduced in squads utilizing
adaptive rules. The APSO strategy does not require the specifica-
tion of optimization parameters (Clerc, 2006), and the LM strategy
is optimized to work well on many problems using default and
internally estimated optimization parameters (Lourakis, 2004).
The adaptive rules implemented in squads to control the perfor-
mance of LM speedups during APSO are also designed to be
general and capable to tackle problems with different complexity.

A flow diagram of squads is presented in Fig. 1. Tables 1 and 2
describe the particle initialization and displacement rules and
their selection within squads. For consistency with other global
strategies discussed here, squads is initialized with Nt ¼ S¼

10þ2
ffiffiffiffi
D
p

mono-particle tribes, where Nt is the number of tribes
in the swarm and S is the number of particles. However, squads

can also be initiated with a single mono-particle tribe and allow
the swarm to develop based on the built-in adaptive rules. If
provided, one of the initial particles is set to predefined values
(rule 1 in Table 1), while the remaining positions of the initial
particles are determined according to rule 5 in Table 1.

Each iteration is initiated by determining the informers for all the
particles. For non-shaman particles, this will be the shaman of their
tribe. A shaman is the particle with the best (e.g. lowest for
minimization) OF value within the tribe. For shamans, this will be
the shaman with the best OF value within the swarm, referred to as
the best shaman. Particle positions are then updated according to the
rules described in Table 2. Particles are initialized to use displace-
ment rule 1. After informers are determined, particle positions are
updated based on their currently selected displacement rule.

The decision to adapt a tribe is based on whether the tribe has
demonstrated sufficient improvement during the previous iteration.
This is performed stochastically, by comparing the fraction of
particles in the tribe that improved their location in the last move



Fig. 1. Flow diagram of squads. E is the current number of model evaluations and

Emax is the allowable number of model evaluations. Decisions to adapt swarm or

update shamans with LM are determined by adaptive rules.
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with a random number between 0 and 1. If the fraction is greater
than the random number, the tribe is considered a good tribe, and the
worst particle is removed from the tribe. Therefore, the larger the
fraction of improved particles in a tribe, the greater probability that
the tribe will be considered a good tribe. This eliminates unnecessary
model evaluations, focusing the attention of the tribe on the good

particles. Otherwise, the tribe is considered a bad tribe, and a particle
is added to the tribe (refer to Table 1 for details on particle
initialization rule selection) and a randomly selected dimension of
a randomly selected particle in the tribe (other than the shaman) is
reinitialized randomly. Adding a particle to a bad tribe is intended to
increase the exploration of the parameter space by the tribe, while
removing the worst particle from a good tribe is intended to intensify
the search focusing on the particles at the best locations. This may
seem counterintuitive to some who feel that bad tribes are being
rewarded and good tribes punished, however, it must be noted that
these are strategies for promoting exploration and intensification.

The swarm adaptation occurs either every NtnðNt�1Þ=4 itera-
tions or if the swarm is labeled by LM as a bad swarm. A swarm is
considered a bad swarm if LM speedup was performed in the
previous iteration, and the OF was not reduced by at least 2/3 for
each of the LM updated shamans. A mono-particle tribe is added
to the swarm if it is considered bad according to rule 5 in Table 1.
The tribe led by a shaman with the worst OF in the swarm is
removed if the swarm is considered good.

Next, particle displacement rule selections are updated. Particle
displacement rule selections are modified based on whether or not
(1) the particle’s position has improved in the last move and (2) their
best overall position has improved in the last move. Following the
convention of Clerc (2006), we use a (þ) to indicate improvement,
(¼) the same OF value, and (�) a worse position. The particles
performance can then be denoted as one of the following: (�¼),
(¼¼), (þ¼), and (þþ), where the first symbol indicates if the particle
improved its position in the last move, and second symbol indicates if
the overall best position of the particle improved in the last move.
Note that the best overall performance can only stay the same or
improve, and an improvement in the overall performance indicates
an improvement over the last position. Table 2 lists the displacement
rule selection based on particle performance.

After the swarm adaptation, squads checks whether or not to
update the shamans using LM. LM updating is turned off in squads

if none of the shamans reduces the OF of the previous shamans by
more than 2/3 during the last LM updating. LM updating will be
restarted when the best OF of the previously obtained OF during
LM has been reduced by an order of magnitude by APSO. This
postpones LM until APSO has identified a position with a
significant improvement, which will perhaps be a previously
unidentified area of attraction. After the LM optimization, the
new shaman location is used in the APSO strategy.

LM requires that the OF be represented as a summation of
components at least equal to the number of parameters as

FðhÞ ¼
XN

i ¼ 1

FiðhÞ, ð3Þ

where h is a vector of model parameters and N is equal or larger
than the number of model parameters. This allows LM to estimate
the local gradient and curvature of the OF. These calculations
utilize numerical derivatives of the OF components in Eq. (3) with
respect to the model parameters (also called the Jacobian matrix).
Based on the Jacobian matrix, LM also estimates the second-
order derivatives of the OF components with respect to model
parameters (also called a Hessian matrix). The second-order
derivatives approximate the local curvature of the OF. LM searches
for the local optimum by adaptive adjustment between first
and second-order optimization techniques (Levenberg, 1944;
Marquardt, 1963). Frequently in the case of model inversion
problems, the OF in Eq. (3) is represented by the discrepancy
between model simulated values f iðhÞ and corresponding observa-
tions oi, where i¼ 1, . . . ,N, and N is now the number of observa-
tions. For example, frequently the OF is computed as

FðhÞ ¼
XN

i ¼ 1

FiðhÞ ¼
XN

i ¼ 1

ðf iðhÞ�oiÞ
2: ð4Þ



Table 1
Particle initialization rules and their selection criteria.

Particle initialization rules:

1. User specified

2. Randomly chosen position within parameter space:

pnewj
¼Uðpminj

,pmaxj
Þ, j¼ 1, . . . ,D

3. Randomly chosen within hyperparallelepid surrounding the best position of the swarm with dimensions ð2 � rjÞ determined by

Euclidean distance between the swarm’s and tribe’s best position:

rj ¼ 9pbestj
�ptribe bestj

9 j¼ 1, . . . ,D

pnewj
¼Uðpbestj

�rj ,pbestj
þrjÞj¼ 1, . . . ,D

4. On one of the vertices of the parameter space with equal probability of being the max or min of each dimension:

if Uð0;1Þo0:5Þ then pnewj
¼ pminj

, else pnewj
¼ pmaxj

j¼ 1, . . . ,D

5. Randomly chosen within the largest empty hyperparallelepid of the parameter space

Criteria Initialization rule selection

First particle of the strategy 1

If initial population is greater 5

than 1, other initial particles

Particle added to bad tribe (tribe adaptation) Randomly chosen between 2, 3, 4, and 5

Mono-particle tribe added (swarm adaptation) 5

LM unable to reduce OF of shaman by 2/3 5

Table 2
Particle displacement rules and their selection criteria based on the status of the particle. Nðm,sÞ is a normal distribution with a mean m and

standard deviation s, U(a,b) is a uniform distribution with minimum a and maximum b, f ð�Þ is the value of the OF, g¼ ½g1 ,g2 , . . . ,gD� is the location

of the particle’s designated informer, b¼ ½b1 ,b2 , . . . ,bD� the particle’s current best location, and minj and maxj are the minimum and maximum

values for the jth dimension, respectively. Refer to the text for a description of the particle status notation.

Particle displacement rules:

1. pj ¼Uðminj ,maxjÞ j¼ 1, . . . ,D, change displacement rule to 2 for next time

2. pj ¼Nðgj ,0:74 � 9bj�gj9Þ

or, if no informer

pj ¼Nðbj ,maxðbj�minj ,maxj�bjÞÞ

3. pj ¼
f ðgÞ

f ðgÞþ f ðbÞ
� Uðbj�9bj�gj9,bjþ9bj�gj9Þþ

f ðbÞ

f ðgÞþ f ðbÞ
� Uðgj�9bj�gj9,gjþ9bj�gj9Þ

or, if no informer

pj ¼Nðbj ,3 �maxðbj�minj ,maxj�bjÞÞ

Particle status Displacement rule selection

(–¼) Randomly choose any rule other than current one

(¼¼) Randomly choose between rule 2 and 3

(þ¼) or (þþ) Change to rule 1 with 50% probability
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Squads calculates the first-order derivatives using a finite differ-
ence approach applied in the LevMar library (Lourakis, 2004).

The following criteria are defined by default in LevMar to
terminate the LM optimization (Lourakis, 2004), and applied in
the LM updating of squads as well: (1) the change in any
parameter is less than 10�10 times the current parameter value;
(2) the relative change in the L2 norm of the change in the
parameter values is less than 10�5 of the L2 norm of the
parameter values; (3) the OF reaches a value of zero; (4) the
Jacobian matrix is close to singular, and (5) the maximum number
of LM iterations (i.e. derivative approximation and Marquardt
parameter value exploration) is achieved (50 when stand-alone
LM is performed; eight in squads). Refer to Lourakis (2004) or
Vesselinov (2011) for additional details on the implementation of
these criteria. The criteria are designed to terminate LM once it
successfully identifies a local optimum. Typically, criteria 1, 2, and
5 terminate the LM updating in squads (the termination criteria
of the LM updating within squads do not terminate the squads

run). Squads is terminated when either one of the following
conditions are met: (1) Emax, the number of allowable model
evaluations, is exceeded or (2) the OF reaches below a user-
specified cutoff value.

The final step of each iteration is to perform a random local
search in the empty space around each shaman (Clerc, 2004). In
this step, a random position within the largest hyperparallelepid
centered on the tribe’s shaman, void of other particles, is eval-
uated. If the position is an improvement over the current shaman
position, the shaman is moved to this location. Otherwise, the
position is forgotten. According to Clerc (2004), this often results
in an improved shaman position at little additional expense.

Global strategies in general, including APSO, are designed to
operate on a bounded parameter space. The parameter ranges are
typically predefined depending on the physical constraints or
prior knowledge about the parameter distributions. However, the
LM optimization by default works in an unbounded parameter
space. There are various techniques to constrain LM within a
parameter space, but these techniques typically have a negative
impact on LM performance. To avoid this, squads operates in a
transformed parameter space. For example, an element of the
parameter vector h is transformed as

ŷ ¼ arcsin
y�ymin

ymax�ymin
� 2�1

� �
, ð5Þ

where ŷ is the transformed parameter, and ymax and ymin are the
upper and lower bounds for parameter y, respectively. APSO is
performed in the transformed parameter space bounded within
½�p=2;p=2� in all dimensions, while the LM updating is performed
unconstrained in the transformed parameter space. Model (func-
tion) evaluations are performed on de-transformed parameters by

y¼ yminþ
sinðŷÞþ1

2

 !
ðymax�yminÞ: ð6Þ

In this way, the LM updating is unaware of parameter boundaries
and is unaffected by performance issues associated with calculat-
ing numerical derivatives near boundaries. It should be noted that
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in the process of the LM updating, the transformed parameters
can be moved outside of the ½�p=2;p=2� range; however, the
transformed parameters are returned to equivalent values within
½�p=2;p=2� before being passed back to APSO by

ŷAPSO ¼ arcsinðsinðŷLMÞÞ, ð7Þ

where ŷLM represents the unconstrained transformed parameters
resulting from LM updating and ŷAPSO represents the constrained
transformed parameters passed back to APSO, thereby ensuring
that APSO receives parameters within its explicitly defined,
bounded parameter space. It is important to note that ŷAPSO and
ŷLM are equivalent in the non-transformed parameter space. As
we have implemented this transformation for LM in cases with-
out prior information, we have not explored its use in cases with
prior information or for estimators based on the maximum
likelihood principle.
4. Test functions

The performance of squads is compared to other optimization
strategies by optimizing the Rosenbrock and Griewank test
functions. The Rosenbrock and Griewank functions present diffi-
cult optimization problems exhibiting frequently observed com-
plexities in OF topology in real world problems (e.g. Rosenbrock,
1960; Griewank, 1981; Clerc, 2006; Cooren et al., 2009). While
many other test functions are available, for the comparison of
relative optimization strategy performance conducted here, the
Rosenbrock and Griewank functions are deemed appropriate.
Fig. 2. Rosenbrock and Griewank polynomial test functions with global minima at (1,1)

rows. The top row shows the parameter space explored by the optimization strategies. T
The response function defined by the Rosenbrock function
composed of a large valley with an ill-defined, shallow global
minimum. For Dr3, the function is unimodal with a global
minimum at x¼ 1 (where 1¼ ½1, . . . ,1�). For 4rDr7, a local
minimum exists at ðx1,x2, . . . ,xDÞ ¼ ð�1;1, . . . ,1Þ in addition to the
global minimum, while for D47, multiple suboptimal local
minima exist (Shang and Qiu, 2006). In the case of two model
parameters, the shape of the Rosenbrock function is presented in
Fig. 2. The Rosenbrock function generalized to any number of
dimensions greater than or equal to two can be expressed as

Frðx1, . . . ,xDÞ ¼
XD�1

i ¼ 1

ð1�xiÞ
2
þ100ðxiþ1�x2

i Þ
2: ð8Þ

The estimation of the local gradient and curvature of the OF by LM
requires the test function to be represented as a summation of
parts as in Eq. (3). The summation components of Frðx1, . . . ,xDÞ

can be expressed as

Fr,2i�1ðxiÞ ¼ ð1�xiÞ
2 ioD ð9Þ

and

Fr,2iðxi,xiþ1Þ ¼ 100ðxiþ1�x2
i Þ

2 ioD ð10Þ

producing 2ðD�1Þ OF components where Eqs. (9) and (10) define
the odd and even numbered components, respectively; therefore,
the number of components (also called observations in the case of
inverse problems) in the 2D, 5D, and 10D cases are 2, 8, and 18,
respectively. LM uses the derivatives of Fr,iðx1, . . . ,xDÞ with
respect to model parameters to evaluate the local gradient and
curvature of the OF. In most real world problems, the analytical
and (0,0), respectively. Note the different parameter ranges on the top and bottom

he bottom row focuses on the parameter space near the respective global minima.



Table 3
Well coordinates, screen top (ztop) and bottom (zbot) depths below the water table,

and year and value of observed contaminant concentrations.

Well x (m) y (m) ztop (m) zbot (m) t (a) c (ppb)

w01 1503 1954 5.57 12.55 49 0

w02 2113 1479 36.73 55.14 49 0

w03 418 950 0 15.04 49 0

w04 1377 1534 13.15 20.41 44 350

49 432

w05 3268 1074 26.73 33.71 49 0

w06 2112 2294 69.01 83.98 49 0

w07 2086 2284 11.15 18.19 49 0

w08 2770 2119 4.86 11.87 49 0

w09 975 1450 3.66 10.09 49 981

w10 723 1599 3.32 9.63 49 1.1

23.2 26.24 49 0.1

w11 1850 1368 4.94 7.99 49 22

32.46 35.48 49 0.3

w12 1761 1636 3.59 6.64 49 15

32.51 38.61 49 0.17

w13 1485 1149 3 6 50 72

36 42 50 0.26

w14 972 869 3 6 50 0

w15 940 1160 3 6 50 38

Table 4
‘True’, minimum, and maximum parameter values for the con-

taminant transport test case.

Estimate xs (m) ys (m) xd (m) yd (m)

‘true’ 1124 1393 258 273

min 210 1230 1 1

max 1460 1930 500 500
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Fig. 3. Map of monitoring well locations. The true source is shown as a solid

rectangle. The search domain for xs and ys is shown as a dotted rectangle. The

contaminant concentration plume at t¼49 years is represented by the color map.

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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computation of derivatives is not feasible. Therefore, in all the
examples presented below, the derivatives are computed numeri-
cally using a finite difference approach, even though the analy-
tical derivation in this case is trivial. Other alternative
representations of Fr as a sum of components are also possible.

The D-dimensional Griewank function is defined as

Fgðx1, . . . ,xDÞ ¼ 1þ
1

4000

XD

i ¼ 1

x2
i �
YD
i ¼ 1

cos
xiffiffi

i
p

� �
: ð11Þ

The Griewank function has numerous local areas of attraction,
but a single global minimum of zero at x¼ 0. In the two
parameter case, the function has the shape of an egg carton that
is depressed in the center, as depicted in Fig. 2.

The summation components of Fgðx1, . . . ,xDÞ can be defined as

Fg,iðx1, . . . ,xDÞ ¼
1

D
þ

x2
i

4000
�

1

D

YD
i ¼ 1

cos
xiffiffi

i
p

� �
: ð12Þ

Therefore, the number of components (observations) equals the
number of model parameters.

The multidimensional Griewank function is important for
testing hybrid optimization strategies because it becomes more
difficult to minimize for global strategies as its dimensionality
increases (Locatelli, 2003). However, although counterintuitive,
the Griewank function becomes easier to minimize for local
strategies as the dimensionality increases. Therefore, with the
increase in dimensionality, it is expected that LM performance
will improve while PSO, TRIBES and hPSO performance will
decrease. For different parameter-space dimensionality, the per-
formance of hybrid strategies will depend on how efficiently they
adaptively balance between the local and global strategies. At low
dimensionality (D¼2), the hybrid strategies should benefit from
the global strategy; at high dimensionality, the hybrid strategies
should benefit from the local strategy.

5. Contaminant source identification test case

Optimization is commonly employed to calibrate physics-
based models to available observations. We demonstrate the
optimization strategies on a hydrogeologic application to identify
the center (xs,ys) and dimensions (xd,yd) of a parallelepiped
contaminant source in an aquifer using observations of contami-
nant concentrations from monitoring wells near the expected
source location. The synthetic groundwater flow and transport
problem is three-dimensional and semi-infinite, the top model
boundary aligns with the top of the aquifer, and the model
extends to infinity laterally and with depth. The locations of the
monitoring wells, depths below the aquifer top boundary of the
top and bottom of the screens, times of observation after the
contaminant release, and observed contaminant concentrations
are presented in Table 3. The parameter values used to generate
the true concentrations at the monitoring wells and the minimum
and maximum parameter values allowed in optimization runs are
presented in Table 4. The true location of the source, the location
of monitoring wells, and contaminant concentrations at t¼49
years since the contaminant was released are presented in Fig. 3.
A similar model is presented in Harp and Vesselinov (2011) with
additional details.

The OF for the contaminant transport test case is expressed as
a sum of squared residuals (SSR) as

FðhÞ ¼
XN

i ¼ 1

ðĉ iðhÞ�ciÞ
2, ð13Þ

where ĉ iðyÞ is the ith simulated concentration resulting from h, ci

is the ith observed concentration, and N is the number of
observations. In summary, there are four unknown model para-
meters constrained by 20 observations.

The simulated contaminant concentrations ðĉÞ are produced
from an analytical contaminant transport model encoded in
MADS (Wexler, 1992; Wang and Wu, 2009; Vesselinov, 2011)
(refer to Harp and Vesselinov, 2011 for additional simulation
details). Due to the rounding of the observed concentrations, a
value of F¼ 0:55 is obtained from the true parameter values.



Fig. 4. Contaminant source identification OF for contaminant source locations

defined by xs and ys. The minimum OF value for each combination of xs and ys are

plotted considering allowable ranges for source lateral dimensions, xd and yd.
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The OF resulting from Eq. (13) plotted as a function of xs and ys

is presented in Fig. 4. The values plotted in Fig. 4 are the lowest
values for the OF at each combination of xs and ys considering
allowable ranges for xd and yd. In other words, this is the OF that
the strategies would traverse if they knew the optimal values for
xd and yd for each combination of xs and ys. Note that the actual 4D
OF is more complicated than this 2D representation. Features
from both the Griewank and Rosenbrock test functions can be
seen in this representation of the OF with multiple areas of
attraction (three suboptimal minima and one global minimum),
regions of parameter insensitivity (flat regions), and narrow,
curved valleys.

Even though the contaminant transport model is analytical,
the computational time is substantially higher than for the test
functions. Within MADS, the number of function evaluation
per second is � 40;000 for the test functions compared to
� 400 for the contaminant transport model. For hPSO, the
number of function evaluations per second is � 11;000 for the
test functions compared to � 2 for the contaminant transport
model; the substantial increase in hPSO computation time
between the test functions and the hydrogeologic application is
due to external coupling between the Matlab computing environ-
ment (applied to execute hPSO) and the external C based trans-
port simulator.
6. Results and discussion

The performance of squads on the Rosenbrock and Griewank
functions is compared with (1) LM, (2) PSO, (3) TRIBES, and
(4) hPSO. LM is an implementation of LevMar (Lourakis, 2004)
(the same LM included in squads), PSO is an implementation of
Standard PSO 2006 (Particle Swarm Central, 2006), TRIBES is an
APSO strategy implemented in the code described in Clerc (2006),
hPSO is a freely available hybrid optimization code from
Leontitsis (2004). LM, PSO, TRIBES and squads are built into the
code MADS (Vesselinov, 2011), which is utilized for all analyses
except hPSO. The hPSO analysis is performed using MATLAB
version 7.8.0.347 (R2009a) (The MathWorks Inc, 2003). The
optimization parameters for PSO and hPSO are set to values that
have been demonstrated to perform well in many test cases
(Particle Swarm Central, 2006) as w¼0.72, c1¼1.2 and c2¼1.2
(refer to Eq. (1)).

The strategies are tested on both functions by performing 1000
independent optimizations runs with random initial guesses
distributed in the searchable parameter space bounded by
[�100:100] for all dimensions. In the case of LM, the searchable
parameter space is not bounded. This did not influence its
performance as the OFs of both functions have generally increas-
ing trends towards the boundaries (Fig. 2). Optimization success
is defined as identifying a solution with all parameters values
within 0.1 of the global minimum parameter values (x¼ 1 for the
Rosenbrock function and x¼ 0 for the Griewank function). The
maximum number of function (model) evaluations (Emax) for the
strategies is set to 20,000. However, in performed analyses, LM
runs terminate at fewer function evaluations as the convergence
criteria of LM are designed to terminate its run once it identifies a
minimum in the OF. The ability of LM to identify the global
minimum depends on whether the minimum encountered by LM
is local or global.

Figs. 5 and 6 present boxplots for the number of function
evaluations for successful runs for 2D, 5D, and 10D Rosenbrock
and Griewank functions, respectively. In the figures, the boxes
represent the 25th–75th percentile ranges, the bars inside of the
boxes represent the median values, and the whiskers represent
the minimum and maximum values. The fraction of successful
runs out of the attempted runs are presented above the boxes.
Note that the statistical definitions of the boxplots are not
accurate for the cases where the number of successful runs does
not present a statistically significant sample. Robustness is
defined as the percentage of successful runs (i.e. fraction of
successful runs * 100) achieved within a given number of function
evaluations. Efficiency is summarized by the statistics presented
in the boxplots.

For the Rosenbrock function (Fig. 5), the robustness of LM
decreases from the 2D case to the 10D case from 36% to 0%. The
robustness of PSO and TRIBES is comparable in the 2D case, albeit
with TRIBES exhibiting higher efficiency in general. In the 5D case,
PSO has a higher robustness than TRIBES, however, at lower
efficiency. The hPSO achieves 100% robustness in the 2D and 5D
cases, with a significant decrease in efficiency from the 2D to 5D
case. The robustness of hPSO decreases significantly in the 10D
case with only a single success out of 1000 (0.1%). In the 10D case,
LM, PSO, TRIBES, and hPSO exhibit low robustness. Squads is 100%
robust in all cases. The efficiency is observed to decrease from the
2D case to the 10D case for squads; however, the efficiency of
squads is greater than PSO, TRIBES, and hPSO in all cases. The
efficiency of squads and LM are similar for the 2D and 5D cases
(Fig. 5). However, in these two cases, the robustness of squads is
100% which is considerably better than the robustness of LM (36%
for 2D and 4% for 5D). In the 10D case, LM did not produce a single
successful run while squads is still 100% robust.

For the Griewank function (Fig. 6), as expected (see Locatelli,
2003), the robustness of LM increases as the dimensionality of the
problem increases. In the 2D case, which is the most difficult for a
local derivative-based strategy (Locatelli, 2003), the robustness is
only 3%. Since LM is local, it is not surprising that LM frequently
converges at non-optimal minima. As expected for the 2D case,
the global strategies (PSO, TRIBES, hPSO and squads) are substan-
tially more robust than LM. The robustness of PSO and TRIBES
(both purely global) decrease significantly from the 2D to the 5D
case, while decreasing only slightly from the 5D to the 10D case
(the efficiency of PSO decreases also). hPSO is 100% robust for the
2D case; however, is unable to locate the global minimum in the
5D and 10D cases. Squads is 100% robust in the 2D and 10D cases
and 80% robust in the 5D case.

As already discussed, the multidimensional Griewank function
is important for testing of hybrid strategies such as squads. For
different parameter-space dimensionality, the performance of
squads is influenced by the ability of the adaptive rules in the
optimization algorithm to balance between the local (LM) and
global (APSO) strategies. With the increase of dimensionality, the
local derivative-based (LM) strategy becomes more robust, while



Fig. 6. Boxplots of number of function evaluations to reach the global minimum

for the 2D, 5D, 10D Griewank function. The boxes represent the 25th–75th

percentile ranges, the bars inside of the boxes represent the median values, and

the whiskers represent the min and max values. Note that the statistical

definitions are not accurate when the number of successful runs does not present

a statistically significant sample and some boxplots have been reduced to single

vertical lines in these cases. The fraction of successful runs out of 1000 for each

strategy is stated above the boxes. The maximum allowable function evaluations

for each run is 20,000.

Fig. 7. Boxplots of number of function evaluations to reach the global minimum

for the hydrogeologic application presented in Section 5. The boxes represent the

25th–75th percentile ranges, the bars inside of the boxes represent the median

values, and the whiskers represent the min and max values. Note that the

statistical definitions are not accurate when the number of successful runs does

not present a statistically significant sample and some boxplots have been

reduced to single vertical lines in these cases. The fraction of successful runs

(out of 1000 for LM, PSO, TRIBES, and squads; out of 100 for hPSO) is stated above

the box. The maximum allowable function evaluations for each run is 5000.

Fig. 5. Boxplots of number of function evaluations to reach the global minimum

for the 2D, 5D, and 10D Rosenbrock function. The boxes represent the 25th to 75th

percentile ranges, the bars inside of the boxes represent the median values, and

the whiskers represent the min and max values. Note that the statistical

definitions are not accurate when the number of successful runs does not present

a statistically significant sample and some boxplots have been reduced to single

vertical lines in these cases. The fraction of successful runs out of 1000 for each

strategy is stated above the boxes. The maximum allowable function evaluations

for each run is 20,000.
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the global (APSO) strategy becomes less robust. At D¼2, squads is
both more robust and efficient than the other global methods
(Fig. 6). At D¼10, squads benefits from the local derivative-based
search, which performs better at higher dimensions. The 5D
Griewank function is observed to be the most difficult test
problem for squads as both the local and global strategies struggle
in this dimensionality of the Griewank function. Nevertheless, for
the 5D case, squads produces the highest robustness (80%) and
efficiency (excluding LM) of all the tested strategies; squads is
100% robust if the maximum number of function evaluations is
increased to 70,000 (results are not shown here). In summary for
the Griewank cases, squads is observed to have the best perfor-
mance when both robustness and efficiency are taken into
consideration than the other strategies (Fig. 6).

The performance of the strategies is demonstrated on the
hydrogeologic application in contaminant source identification
presented in Section 5. A boxplot of the necessary function
evaluations for successful runs is presented in Fig. 7. As with
the test functions, 1000 runs are performed for each strategy,
except for hPSO, where only 100 runs are performed due to the
computational expense of evaluating the contaminant transport
model from hPSO (� 2:2 function evaluations per second). The
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maximum number of function evaluations allowed for each
optimization run is limited to 5000. An optimization run is
considered successful if the OF is reduced below a value of 1.
This ensures that the solution has reached the area of attraction
around the global minimum as the suboptimal minima of the OF
are all greater than 1. As with the test functions, it is observed
that LM is efficient on the hydrogeologic application, but only
approximately 26% robust. PSO and TRIBES are observed to be
inefficient and not robust in this case requiring high numbers of
function evaluations with approximately 3% and 0.7% robustness,
respectively. The hPSO demonstrates some robustness at 69%, but
with low efficiency in general with a large variability in the
necessary number of function evaluations. squads demonstrates
high robustness at 100% with higher efficiency than PSO, TRIBES,
and hPSO. While the efficiency of LM is better than squads in this
case, this is with a significantly lower robustness.

It is important to emphasize that in all test cases, squads

converges at a lower number of model evaluations than PSO,
TRIBES and hPSO. This is manifested by the minimum values of
the boxplots in Figs. 5–7. Furthermore, the statistical distributions
of the number of model evaluations required to achieve the global
minimum for squads are skewed to the left in all cases (Figs. 5–7).
This demonstrates that more frequently squads may converge
with lower number of functional evaluations.

The application of squads is performed using the code MADS
(Vesselinov, 2011). MADS and other files needed to execute the
synthetic problems presented in this paper are available at http://
www.ees.lanl.gov/staff/monty/codes/mads.html.
7. Conclusions

A new adaptive global hybrid optimization strategy called
squads is developed for solving computationally intensive inverse
problems. Comparisons of robustness and efficiency between
squads and LM, PSO, TRIBES, and hPSO are performed using 2D,
5D, and 10D Griewank and Rosenbrock test functions and a 4D
synthetic hydrogeologic application. Based on this research, the
following conclusions can be drawn:
1.
 Based on comparisons of robustness with a local strategy (LM),
squads is robust in avoiding becoming stuck in local minima
during the optimization as typically observed in the case of
local derivative-based strategies.
2.
 Based on comparisons of strategy efficiency with a local strategy
(LM), squads has nearly the same efficiency as local optimization
for the Rosenbrock function, but substantially lower efficiency for
the Griewank and hydrogeologic application.
3.
 Based on comparisons of strategy efficiency with global
strategies (PSO and TRIBES), squads reduces the number of
model runs typically required of global strategies by efficiently
exploring local areas of attraction.
4.
 Based on comparisons of strategy robustness and efficiency
with an alternative hybrid strategy (hPSO), squads locates the
global minimum at a greater frequency and with less function
evaluations.
5.
 When both robustness and efficiency are taken into considera-
tion to evaluate strategy performance, squads outperforms LM,
PSO, TRIBES, and hPSO on the Rosenbrock and Griewank
functions and on the hydrogeologic application evaluated here.
6.
 The results of this study indicate that squads is a promising
alternative for calibration and parameter estimation of phy-
sics-based models.
7.
 Additional comparisons to other strategies utilizing other test
functions and applications are required to further evaluate
squads performance.
Appendix A. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org.10.1016/j.cageo.2012.05.027.
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